Progress Report: Task B-2 Venus 1:1.5M Topographic Maps

Randolph Kirk for Elpitha Howington-Kraus

MA/A Planetary Cartography/Geologic
Mapping Working Group

Background

- FY 2001 proposal: Operational mapping
 - \$125K
 - 5 FMAP quads (12°x12°)
- PCGMWG expressed concerns about sensitivity of DTMs to noisy/erroneous altimetry data
 - Budget cut to \$40K
 - U/G/ instructed to focus on tests ("transects") in small areas to be identified by WG
 - Use other altimetry in setup and/or as a check
 - Campbell's MG/1 with echo quality analysis
 - Goldstone Earth-based altimetry

Selection of Test Areas

- PGCGMWG test area desires received Jan. 2001
 - Area of Goldstone/Magellan-stereo overlap
 - Central Ovda regio
- Total area equivalent to the original 5 quads!
 - Must reduce the number and/or size of areas
- □ Goldstone data effectively useless for testing because of noise level (~1 km RM/)
- Focus on Ovda

Goldstone/MG/1/tereo Overlap

Better Mapping Through Chemistry

- Campbell does not believe echo-quality data can be used objectively/automatically in bundle adjustment
- Focus on high-altitude dark materials (Arvidson et al., 1994; Campbell et al. 1999) as test of resonableness of DTM results: Does the dark/bright boundary follow a contour?
- Dark patches straddle boundaries of FMAPs and of area suggested by PCGMWG (Murphy's Law of Cartography)

Central Ovda Test Mapping Area

- Containing several high altitude dark patches
- □ Longitudes 88°-98°E, Latitudes 8°-5°
- 47 Cycle 1 orbits 0947 to 0994
- 34 Cycle 3 orbits 4536 to 4582
 - Cycle 3 coverage has significant gaps
 - Where possible, extend control point collection north and south to bridge missing-orbit gaps
 - In largest Cycle 3 gap, connect Cycle 1 BIDRs only

Central Ovda Test Mapping Area

Cycle 3 / tereo-DLAP Coverage 88°-98°E, 8°-5°/

Cycle 1 metadata not in archive

Cycle 3 image not in archive

Progress

- 81 F-BIDRs ingested
- 212 tiepoints collected
- Bundle-adjustment carried out successfully
 - Reminder: Orbits are adjusted rigidly in 3 axes. This means ties with inconsistent altimetry data will be rejected; images/stereomodels do not "bend" to accommodate them.
- DTMs collected at 675 m/post—see poster
- Dark region boundary elevations
 - Locally constant to <100m for many km</p>
 - Patches vary by 100s of m—texture vs. reflectivity?
 - Range of ~450 m across test area

Dark Margin Spot Elevations

 σ Between sites = 172 m

 σ Within sites = 44 m

Closeup of Contours

Remaining Action Items

- Transmit DTM data with PCGMWG for review/assessment
 - Independent assessment of dark boundary heights
 - Comparison with altimetry
 - Comparison with altimeter echo quality...
- We would love to have WG members come examine the data interactively on the DPW in Flagstaff
- Prepare written (open-file?) report
- Prepare proposal to resume systematic mapping in FY 2002

Meanwhile...

- We reported last year on a mysterious bug in the MG/1 sensor model software
 - □ Errors of 10s of pixels in calculating N-/ coordinate
 - / lightly variable from orbit to orbit
- Cause of about 90% of the problem identified:
 - \blacksquare Use of inexact λ in sensor model calculations
 - Fix eliminates cursor jumping, matching problems
- Cause of remaining high-latitude errors has been traced to difference between MG/1 U/P and sensor model atmospheric refraction calculations
 - Currently checking which is correct